Pseudo-projective Tensor on Sequential Warped Products

نویسندگان

چکیده

The main objective of this paper is to study pseudo-projective tensor on sequential warped products and then obtain necessary sufficient conditions for a product be pseudo-projectively flat. Moreover, we also provide characterization flat generalized Robertson–Walker standard static spacetimes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy projective modules and tensor products in fuzzy module categories

Let $R$ be a commutative ring. We write $mbox{Hom}(mu_A, nu_B)$ for the set of all fuzzy $R$-morphisms from $mu_A$ to $nu_B$, where $mu_A$ and $nu_B$ are two fuzzy $R$-modules. We make$mbox{Hom}(mu_A, nu_B)$ into fuzzy $R$-module by redefining a function $alpha:mbox{Hom}(mu_A, nu_B)longrightarrow [0,1]$. We study the properties of the functor $mbox{Hom}(mu_A,-):FRmbox{-Mod}rightarrow FRmbox{-Mo...

متن کامل

On the Geometry of Projective Tensor Products

In this work, we study the volume ratio of the projective tensor products `p ⊗π `q ⊗π `r with 1 ≤ p ≤ q ≤ r ≤ ∞. We obtain asymptotic formulas that are sharp in almost all cases. As a consequence of our estimates, these spaces allow for a nearly Euclidean decomposition of Kašin type whenever 1 ≤ p ≤ q ≤ r ≤ 2 or 1 ≤ p ≤ 2 ≤ r ≤ ∞ and q = 2. Also, from the Bourgain-Milman bound on the volume rat...

متن کامل

fuzzy projective modules and tensor products in fuzzy module categories

let $r$ be a commutative ring. we write $mbox{hom}(mu_a, nu_b)$ for the set of all fuzzy $r$-morphisms from $mu_a$ to $nu_b$, where $mu_a$ and $nu_b$ are two fuzzy $r$-modules. we make$mbox{hom}(mu_a, nu_b)$ into fuzzy $r$-module by redefining a function $alpha:mbox{hom}(mu_a, nu_b)longrightarrow [0,1]$. we study the properties of the functor $mbox{hom}(mu_a,-):frmbox{-mod}rightarrow frmbox{-mo...

متن کامل

The Alternative Dunford-pettis Property on Projective Tensor Products

In 1953 A. Grothendieck introduced the property known as Dunford-Pettis property [18]. A Banach space X has the Dunford-Pettis property (DPP in the sequel) if whenever (xn) and (ρn) are weakly null sequences in X and X∗, respectively, we have ρn(xn) → 0. It is due to Grothendieck that every C(K )-space satisfies the DPP. Historically, were Dunford and Pettis who first proved that L1(μ) satisfie...

متن کامل

Notes on Tensor Products

Basic Definition: Let R be a commutative ring with 1. A (unital) R-module is an abelian group M together with a operation R ×M → M , usually just written as rv when r ∈ R and v ∈ M . This operation is called scaling . The scaling operation satisfies the following conditions. 1. 1v = v for all v ∈M . 2. (rs)v = r(sv) for all r, s ∈ R and all v ∈M . 3. (r + s)v = rv + sv for all r, s ∈ R and all ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mediterranean Journal of Mathematics

سال: 2023

ISSN: ['1660-5454', '1660-5446']

DOI: https://doi.org/10.1007/s00009-023-02303-7